A general chart, on Mercator's projection, to shew the track of the Lion and Hindostan from England to the Hindoostan; with the daily statement of the barometer and thermometer as observed at noon; containing also the limits of the Chinese empire.
A sketch by compass of the coast of the Promontory of Shan-Tung with the track of the ships and the soundings from the place of first marking the Land to the Strait of Ma-Tac.
A LEAF of the CACTUS OPUNTIA or PRICKLY PEAR with the COCHINEAL INSECT on it.

1. The leaf, Cereus or Cereus, or the us of nature.
2. The same with the cochineal insect.
3. The body of the insect is of a bright red color, and the long fleshy or provenceing from the posterior extremity of the body are white, but were much dark in the engraving in this print from the paper.
4. The female before the male of nature, in two different stages of its growth, the body is of a brownish color, the wings of a bright red.
5. First state of the larva or caterpillar of the fly as opposed to the Cereus.
6. The same magnified.
7. The larva of the fly in different cases and magnitudes, just before its change into the Cochineal state. In nature it is the length of the line rods I. 50. 24.
8. The Cochineal of the fly.
9. The perfect fly magnified. The natural size is the length of the line rods under it.
The FIRE BACKED PHEASANT of JAVA

London: Published April 10th 1800.
VIEW of one of the WESTERN GATES of the CITY of PEKING.
PLANS, SECTIONS, ELEVATIONS, &c. of the GREAT WALL of CHINA

and some of the TOWERS near THE PASS OF COU-P'PE-KOU.

REFERENCES

Fig. 1. Plan of the Great Wall in the Province of Shansi.
Fig. 2. Section of the Wall at Hebei.
Fig. 3. Plan of the Wall at Shan-tung.
Fig. 4. Section of the Wall at Honan.
Fig. 5. Section of the Wall at Kansu.
Fig. 6. Section of the Wall at Kansu.
Fig. 7. Section of the Wall at Szechuan.
Fig. 8. Section of the Wall at Yunnan.
Fig. 9. Section of the Wall at Sinkiang.

REMARKS

The plans are drawn to an average height of 10 feet, which is the highest point reached by the wall. The perspective view of the wall is intended to show the general appearance of the wall as seen from a distance. The wall is constructed of stone and brick, and the parts are shown as they would appear from a distance.

The sections are drawn to an average height of 10 feet, which is the highest point reached by the wall. The perspective view of the wall is intended to show the general appearance of the wall as seen from a distance. The wall is constructed of stone and brick, and the parts are shown as they would appear from a distance.

The plans are drawn to an average height of 10 feet, which is the highest point reached by the wall. The perspective view of the wall is intended to show the general appearance of the wall as seen from a distance. The wall is constructed of stone and brick, and the parts are shown as they would appear from a distance.

The sections are drawn to an average height of 10 feet, which is the highest point reached by the wall. The perspective view of the wall is intended to show the general appearance of the wall as seen from a distance. The wall is constructed of stone and brick, and the parts are shown as they would appear from a distance.
PLAN, SECTION and ELEVATION of the POO-TU-LA, or TEMPLE of the LAMA
AT ZIE-HOL in TARTARY.

SECTION and ELEVATION of the Poo-Tu-La, or Temple of the Lama
At Zie-Hol in Tartary.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

REFERENCES IN THE PLAN Fig. 1.

A. The Temple
1. The principal buildings are surrounded by a wall
2. The walls of the principal buildings are surrounded by a wall
3. The principal buildings are surrounded by a wall
4. The walls of the principal buildings are surrounded by a wall
5. The principal buildings are surrounded by a wall
6. The walls of the principal buildings are surrounded by a wall
7. The principal buildings are surrounded by a wall
8. The walls of the principal buildings are surrounded by a wall
9. The principal buildings are surrounded by a wall
10. The walls of the principal buildings are surrounded by a wall

Fig. 6. Geometrically similar copies of the plan.

Fig. 7. Structural similarities in the floor plans.
A SCENE FROM A HISTORICAL PLAY PERFORMED ON THE CHINESE STAGE.
VIEW of a FAL-LOO, improperly called a TRIFLUAL ARCH, and of a CHINESE FORTRESS.
A VIEW near the CITY of LEE-TSIN on the Banks of the GRAND CANAL.
PLAN AND SECTION OF A SLUICE OR FLOOD GATE ON THE GRAND CANAL OF CHINA.

and of an INCLINED PLANE, by which VESSELS are made to pass between CANALS of different levels.

Fig. 1. Plan of a Sluice and Bridge
- 1. Section of the Sluice
- 2. Plan of the Bridge
- 3. The sluice with lock
- 4. The sluice with lock
- 5. The sluice with lock
- 6. The sluice with lock
- 7. The sluice with lock
- 8. The sluice with lock

Fig. 2. Plan of an Inclined Plane
- 1. Plan of the sluice between two canals of different levels
- 2. Section of the sluice
- 3. Inclined plane with lock
- 4. Inclined plane with lock
- 5. Inclined plane with lock
- 6. Inclined plane with lock
- 7. Inclined plane with lock
- 8. Inclined plane with lock

Fig. 3. Plan of an Inclined Plane
- 1. Plan of the sluice between two canals of different levels
- 2. Section of the sluice
- 3. Inclined plane with lock
- 4. Inclined plane with lock
- 5. Inclined plane with lock
- 6. Inclined plane with lock
- 7. Inclined plane with lock
- 8. Inclined plane with lock

Fig. 4. Plan of an Inclined Plane
- 1. Plan of the sluice between two canals of different levels
- 2. Section of the sluice
- 3. Inclined plane with lock
- 4. Inclined plane with lock
- 5. Inclined plane with lock
- 6. Inclined plane with lock
- 7. Inclined plane with lock
- 8. Inclined plane with lock
VIEW of the TCHIN-SHAN, or GOLDEN INLAND on the YANG-TSE-KIANG, or GREAT RIVER of CHINA.
VIEW of the TOWER of the THUNDERING WINDS on the borders of the LAKE YEE-NOO, taken from the VILE of TOMBS.
SECTION and ELEVATION of a WHEEL used by the CHINESE for raising WATER.

REFERENCES.

A = The water is supplied to the wheel by means of pipes or gutters or channels, and enters at B. The water then passes into the water box C, which is about three feet in height and three feet in diameter.

D = The water then passes into the wheel, which consists of a series of wooden bars or wheels, each of which is about three feet in height and three feet in diameter. The water is raised to the level of the water box by the force of the water in the wheel, which is turned by the water as it passes through the wheel.

E = The water is then discharged from the wheel into the water box C, and is raised to the level of the water box by the force of the water in the wheel.

F = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

G = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

H = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

I = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

J = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

K = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

L = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

M = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

N = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

O = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

P = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

Q = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

R = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

S = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

T = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

U = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

V = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

W = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

X = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

Y = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

Z = The water is then discharged from the water box C into the river or stream, and is raised to the level of the water box by the force of the water in the wheel.

...